
Chapitre 7

Machines thermiques

7.1 Réfrigérateur

Un réfrigérateur se refroidit en rejetant de la chaleur dans l’environnement à
température T+. La puissance mécanique fournie au dispositif est PW et la
puissance thermique, décrivant le transfert de chaleur à l’environnement, est
PQ. Déterminer la température la plus basse T− que le système peut atteindre
s’il a une efficacité maximale.

Application numérique

PW = 100 W, PQ = 350 W et T+ = 25◦ C.

7.1 Solution

La température la plus basse que le système peut atteindre est obtenue lorsque
le réfrigérateur opère selon un cycle calorifique de Carnot. Alors, l’efficacité de
refroidissement (7.42) d’un cycle de Carnot est donnée par (7.49),

ε−C =
PQ
PW

=
T−

T+ − T−

Ainsi, la température la plus basse T− s’écrit,

T− =
PQ

PQ + PW
T+ = − 41◦ C

7.2 Centrale nucléaire refroidie par une rivière

Une centrale nucléaire opère entre un réservoir chaud constitué d’une chambre
à combustion ou d’un réacteur nucléaire et un réservoir froid constitué de l’eau
d’une rivière. Elle est modélisée comme une machine thermique opérant entre le
réservoir chaud à température T+ et un réservoir froid à température T−. Ana-
lyser le fonctionnement de cette centrale nucléaire en suivant les instructions
suivantes :
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1) Déterminer le rendement maximal ηC de cette centrale nucléaire et la puis-
sance thermique PQ+ décrivant l’échange de chaleur avec la chambre de
combustion.

2) Supposer que le rendement réel est η = k ηC et déterminer la puissance
thermique PQ− décrivant l’échange de chaleur avec la rivière.

3) Déterminer la différence de température ∆T avec l’eau s’écoulant avec un
débit V̇ dans la rivière. L’eau a une masse volumique m et une chaleur
spécifique par unité de masse à pression constante c∗p.

Application numérique

PW = − 750 MW, T+ = 300◦ C, T− = 19◦ C, k = 60 %, V̇ = 200 m3/s,
m = 1000 kg/m3 et c∗p = 4181 J/kg K.

7.2 Solution

On a principalement examiné des cycles thermodynamiques constitués de pro-
cessus distincts dans le chapitre 7. Ici, on considère une centrale nucléaire
comme une machine thermique en régime stationnaire. Ainsi, il est plus naturel
de la caractériser par sa puissance mécanique PW , par la puissance thermique
PQ+ au réservoir chaud et par la puissance thermique PQ− au réservoir froid.

1) Le rendement maximal est le rendement du cycle de Carnot (7.46). On peut
exprimer le rendement (7.38) en termes des puissances. Ainsi,

ηC = − PW
PQ+

= 1− T−

T+
= 49 %

Par conséquent, la puissance thermique PQ+ qui décrit l’échange de chaleur
avec le réservoir chaud est donné par,

PQ+ = −PW
T+

T+ − T− = 1.53 GW

2) Comme la centrale nucléaire est en régime stationnaire, le premier prin-
cipe (1.29) s’écrit,

U̇ = PW + PQ+ + PQ− = 0

ce qui implique que,

PQ− = −
(
PW + PQ+

)
Le rendement (7.38) s’écrit,

η = k ηC = − PW
PQ+

ainsi PQ+ = − PW
k ηC

Ainsi,

PQ− = PW

(
1− k ηC
k ηC

)
= − 1.80 GW
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3) Etant donné que la masse d’eau M est le produit de la masse volumique
de l’eau m et du volume V , le débit de masse est donné par,

Ṁ = mV̇

La puissance thermique s’écrit,

PQ− = Ṁ c∗p ∆T = mV̇ c∗p ∆T

ce qui implique que la différence de température est donnée par,

∆T =
PQ−

mV̇ c∗p
= − 2◦C

7.3 Cycle de freinage

Un système est constitué d’un cylindre vertical dont la section supérieure est
scellée et dont la section inférieure est fermée par un piston. Une soupape A
placée sur la section supérieure contrôle l’entrée de gaz et une autre soupape
B (située à côté de la soupape A) est retenue par un ressort qui exerce une
pression constante p2 sur la soupape. Le système subit les processus suivants :

• 0 −→ 1 : Le piston est au sommet du cylindre ; la soupape A s’ouvre et le
piston est abaissé de sorte que du gaz à pression atmosphérique p0 = p1
est amené dans le cylindre. Le gaz est à une température T1. La soupape
B est fermée. Le volume maximal occupé par le gaz est V1.

• 1 −→ 2 : La soupape A est maintenant fermée et le piston monte suffi-
samment rapidement pour que le processus puisse être considéré comme
adiabatique. La soupape B reste fermée durant la montée du piston aussi
longtemps que la pression du gaz est inférieure à p2. Alors que le piston
continue de monter, le gaz atteint la pression p2 = 10 p1 à température T2
dans un volume V2. On suppose que ce processus est réversible, donc les
relations (5.90) et (5.83) s’appliquent.

• 2 −→ 3 : Alors que le piston continue de monter, la soupape B s’ouvre, la
pression est p3 = p2 et le gaz est rejeté dans l’environnement. La soupape
A reste fermée jusqu’à ce que le piston atteigne le sommet, où V3 = V0 = 0.

• 3 −→ 0 : La soupape B se ferme et la soupape A s’ouvre. Le système est
alors prêt pour le prochain cycle.

Analyser le cycle en utilisant les instructions suivantes :

1) Esquisser le diagramme (p, V ) pour les trois processus que le système subit.

2) Déterminer la température T2 et le volume V2.

3) Déterminer le travail W effectué par cycle.
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Fig. 7.1 Diagramme (p, V ) du cycle de freinage.

Application numérique

V0 = V3 = 0, p0 = p1 = 105 Pa, V1 = 0.25 l, T1 = 27◦ C et γ = 1.4.

7.3 Solution

1) Le diagramme (p, V ) est constitué d’une détente isobare 0 −→ 1, d’une
compression adiabatique 1 −→ 2, d’une contraction isobare 2 −→ 3, et
d’une détente isochore 3 −→ 0 (fig. 7.1).

2) Pour la compression adiabatique, la condition d’adiabacité (5.83) s’écrit,

T γ1 p
1− γ
1 = T γ2 p

1− γ
2

ce qui implique que,

T2 = T1

(
p1
p2

) 1− γ
γ

= T1

(
1

10

) 1− γ
γ

= 579 K

La condition d’adiabacité (5.90) s’écrit,

p1 V
γ
1 = p2 V

γ
2

ce qui implique que,

V2 = V1

(
p1
p2

) 1
γ

= V1

(
1

10

) 1
γ

= 0.048 l

3) Le travail effectué sur le gaz durant un cycle entier est la somme des travaux
effectués durant les quatre processus,

W = W01 +W12 +W23 +W30
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Le travail effectué durant le processus isobare est,

W01 +W23 = − p1
∫ V1

0

dV − p2

∫ 0

V2

dV = − p1 V1 + p2 V2

Il n’y a pas de travail effectué durant le processus isochore,

W30 = 0

Le travail effectué durant le processus adiabatique est,

W12 = −
∫ V2

V1

p dV = − p1 V γ1
∫ V2

V1

dV

V γ
=
p1V

γ
1

γ − 1

(
V 1−γ
2 − V 1−γ

1

)
=

1

γ − 1
(p2 V2 − p1 V1)

Ainsi,

W =
γ

γ − 1
(p2 V2 − p1 V1) =

γ

γ − 1
p1 (10V2 − V1) = 80.5 kJ

Vu que le travail W est positif, le système se comporte comme un frein qui
s’oppose au mécanisme d’entrâınement du piston

7.4 Expérience de Clément-Desormes

Il est possible de déterminer le coefficient γ d’un gaz parfait en mesurant les
pressions obtenues à l’aide d’une série de processus thermiques connus sous le
nom d’expérience de Clément-Desormes.

(1)

Contrairement à la définition qui
en est faite habituellement, ici on considère que le gaz reste confiné dans une
enceinte dont on fait varier le volume (fig. 7.2).

Le tube en U permet de mesurer la pression du gaz grâce au déplacement
d’un liquide à l’intérieur du tube. Le volume du tube est négligeable par rapport
au volume V de la sphère. Initialement, la vanne est ouverte et la pression p0
est la pression atmosphérique, la température T0 est la température ambiante
et le volume V0 est le volume total de gaz dans la sphère et la seringue. Ensuite,
on ferme la vanne et le gaz qui se trouve dans la seringue est lentement injecté
dans la sphère. Ce processus est une compression isotherme. On mesure alors
la différence de la pression du gaz ∆p1 entre la pression intermédiaire p1 et la
pression initiale p0. Ensuite, on retire le piston de la seringue aussi rapidement
que possible afin de ramener la pression du gaz dans la sphère à sa valeur initiale
p0. Ce processus est une détente adiabatique. A la fin de la détente adiabatique,
le volume de gaz dans la sphère et la seringue est V2 et le système atteint un
état d’équilibre thermique durant une compression isochore. On mesure alors

(1)
G. Bruhat, Thermodynamique, Masson et Cie, 6e édition, 1968, p. 173
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Fig. 7.2 Dans une mise en oeuvre particulière de la méthode de Clément-Desormes pour
mesurer le coefficient γ d’un gaz, un tube en U est utilisé pour mesurer les variations de
pression, et une seringue assure que les processus aient lieu avec une quantité de gaz fixée.

la différence de pression ∆p2 entre la pression finale p2 et la pression initiale p0.
Montrer que les différences de pressions mesurées peuvent être utilisées pour
déterminer le coefficient γ d’après la relation,

γ ' ∆p1
∆p1 − ∆p2

Cette approximation est satisfaite dans la limite où ∆p1 � p0 et ∆p2 � p0.
Utiliser un développement limité au 1 er ordre en ∆p1/p0 et ∆p2/p0 pour établir
ce résultat.

7.4 Solution

Dans l’état initial, le gaz parfait a un volume V0, une pression p0 et une tem-
pérature T0. D’après l’équation d’état (5.47) d’un gaz parfait,

p0V0 = NRT0

A la fin du processus de compression isotherme à température T0, le gaz parfait
a une pression p1 et il est entièrement contenu dans la sphère de volume V .
D’après l’équation d’état (5.47) d’un gaz parfait,

p1V = NRT0

A la fin du processus de détente adiabatique, la pression du gaz parfait est
égale à la pression initiale p0 et le volume de gaz dans la sphère et la seringue
est V2. D’après l’équation (5.90),

p1V
γ = p0V

γ
2

A la fin du processus de compression isochore à volume V2, la pression du gaz
parfait est p2 et la température du gaz dans la sphère et la seringue est égale à
la température initiale T0. D’après l’équation (5.47),

p2V2 = NRT0
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Des équations précédentes, on tire que,

p1
p0

=

(
V2
V

)γ
=

(
NRT0
p2

p1
NRT0

)γ
=

(
p1
p0

p0
p2

)γ
En utilisant les définitions p1 = p0 + ∆p1 et p2 = p0 + ∆p2, l’expression précé-
dente devient,

1 +
∆p1
p0

=

(
1 +

∆p1
p0

)γ (
1 +

∆p2
p0

)− γ

Vu que les variations de pression sont faibles par rapport à la pression initiale,
i.e. ∆p1 � p0 et ∆p2 � p0, le développement au 1 er ordre en ∆p1/p0 et ∆p2/p0
s’écrit,

1 +
∆p1
p0
'
(

1 + γ
∆p1
p0

)(
1− γ

∆p2
p0

)
ou encore,

1 +
∆p1
p0
' 1 + γ

(
∆p1
p0
− ∆p2

p0

)
− γ2

∆p1
p0

∆p2
p0

où le dernier terme est un terme du 2 e ordre que l’on peut négliger. Ainsi, on
obtient la relation,

∆p1 ' γ (∆p1 − ∆p2)

ce qui implique que,

γ ' ∆p1
∆p1 − ∆p2

7.5 Cycle de Lenoir

Le cycle Lenoir est un modèle de fonctionnement de moteur à combustion qui
a été breveté par Jean Joseph Etienne Lenoir en 1860. Ce cycle est défini par
trois processus réversibles :

• 1 −→ 2 compression isochore

• 2 −→ 3 détente adiabatique

• 3 −→ 1 compression isobare

On suppose que le cycle est effectué sur un gaz parfait caractérisé par le coeffi-
cient c (5.62). Les valeurs suivantes de certaines variables d’état sont supposées
connues : la pression p1, les volumes V1 et V3, la température T1 et le nombre
de moles de gaz N . Analyser ce cycle en utilisant les instructions suivantes :

1) Esquisser les diagrammes (p, V ) et (T, S) du cycle.

2) Déterminer la variation d’entropie ∆S12 du gaz durant le processus isochore
1 −→ 2.

3) Exprimer la température T2 en termes de la chaleur échangée Q12 durant
le processus isochore 1 −→ 2.
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4) Déterminer la pression p2 en termes de la pression p1, le volume V1 et la
chaleur échangée Q12.

5) Déterminer la pression p3 en termes de la pression p2 et des volumes V2 et
V3.

6) Déterminer le travail W23 effectué durant le processus adiabatique 2 −→ 3
et la chaleur Q23 échangée durant ce processus.

7) Déterminer le travail W31 effectué durant le processus isobare 3 −→ 1 et la
chaleur Q31 échangée durant ce processus.

8) Etablir l’expression explicite du rendement de ce cycle ηL défini en confor-
mité avec la relation (7.38) comme,

ηL = − W23 +W31

Q12

Exprimer le rendement ηL en termes des températures T1, T2 et T3.

7.5 Solution

3

2

1

1

V

p

1 3

2

V V

p

p

Fig. 7.3 Diagramme (p, V ) de Lenoir

T2

T1

S2S1

Q12

Q31

V=V1

p=p1

S

T

1

3

2

Fig. 7.4 Diagramme (T, S) de Lenoir

1) Pour le processus isochore, V = V1 = V2 = cste (fig. 7.3). Pour le pro-
cessus adiabatique, d’après la relation (5.90), p (V ) = cste/V γ où γ > 1 et
cste = p1 V

γ
1 = p2 V

γ
2 . La pression p (V ) est une fonction convexe monotone

décroissante de V . Pour le processus isobare, p (V ) = p3 = p1 = cste.
Pour le processus isochore, d’après la relation (7.20), T (S) =
T1 exp ((S − S1) /cNR), qui est une fonction monotone croissante de
S (fig. 7.4). Pour le processus adiabatique, S = S1 = S2 =
cste. Pour le processus isobare, d’après la relation (7.23), T (S) =
T1 exp ((S − S1) / (c+ 1)NR), qui est une fonction monotone croissante
de S.

2) D’après la relation (7.20), le travail effectué durant le processus isochore
s’annule,

∆S12 = cNR ln

(
T2
T1

)
= (c+ 1) NR ln

(
V1
V3

)
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3) D’après la relation (7.19), la chaleur échangée durant le processus isochore
s’écrit,

Q12 = ∆U12 =

∫ U2

U1

dU = cNR

∫ T2

T1

dT = cNR (T2 − T1)

Ainsi,

T2 = T1 +
Q12

cNR

4) A l’aide de l’équation d’état du gaz parfait (5.47), la pression p2 est donnée
par,

p2 =
N RT2
V2

=
N R

V1

(
T1 +

Q12

cN R

)
= p1 +

Q12

c V1

5) D’après la relation (5.90) pour un processus adiabatique,

p3 = p2

(
V2
V3

)γ
6) D’après les relations (7.14) et (7.13), le travail effectué durant le processus

adiabatique est donné par,

W23 = ∆U23 = cNR

∫ T3

T2

dT = cNR (T3 − T2)

et il n’y a pas de chaleur échangée,

Q23 =

∫ 3

2

TdS = 0

7) D’après les relations (7.21) et (7.22) qui caractérisent le processus isobare,
le travail effectué peut s’écrire,

W31 = −
∫ 1

3

p dV = − p1
∫ V1

V3

dV = − p1 (V1 − V3) = NR (T3 − T1)

et la chaleur échangée est donnée par,

Q31 = ∆H31 =

∫ H1

H3

dH = (c+ 1)NR

∫ T1

T3

dT = (c+ 1)NR (T1 − T3)

Ce transfert de chaleur n’a pas lieu durant un processus isotherme. Ainsi, il
ne peut pas être décrit par un transfert de chaleur à un réservoir thermique.

8) A l’aide des résultats obtenus ci-dessus et compte tenu du coefficient γ =
(c+ 1) /c, le rendement ηL du cycle de Lenoir s’écrit,

ηL = − W23 +W31

Q12
=
c (T2 − T3) + (T1 − T3)

c (T2 − T1)

=
T1 + c T2 − (c+ 1)T3

c (T2 − T1)
=

(γ − 1)T1 + T2 − γ T3
T2 − T1

= 1− γ
T3 − T1
T2 − T1
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7.6 Cycle moteur de Brayton

Un gaz parfait subit quatre processus réversibles formant le cycle moteur de
Brayton (fig. 7.5) :

1→ 2 compression adiabatique,

2→ 3 expansion isobare,

3→ 4 détente adiabatique,

4→ 1 contraction isobare.

Les pressions p1 et p2 ainsi que les volumes V1 et V3 sont supposés connus.

Fig. 7.5 Digramme (p, V ) du cycle moteur de Brayton.

1) Déterminer le travail effectué W34 lors de la détente adiabatique 3→ 4.

2) Déterminer la chaleur fournie Q23 lors de l’expansion isobare 2→ 3.

3) Déterminer la variation d’entropie ∆S41 lors de la contraction isobare
4→ 1.

4) Esquisser le diagramme (T, S) du cycle.

7.6 Solution

1) D’après l’expression (7.14) du travail effectué pour un processus adiaba-
tique,

W34 = ∆U34 = cNR

∫ T4

T3

dT = cNR (T4 − T3)

Compte tenu de l’équation d’état (5.47) du gaz parfait,

p3V3 = NRT3 et p4V4 = NRT4

des propriétés des processus isobares,

p3 = p2 et p4 = p1

et de la propriété (5.90) d’un procesus adiabatique,

p3V
γ
3 = p4V

γ
4 ⇒ V4 =

(
p3
p4

)1/γ

V3 =

(
p2
p1

)1/γ

V3
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le travail effectué W34 est mis sous la forme,

W34 = c (p4V4 − p3V3) = c (p1V4 − p2V3) = cV3

(
p1

(
p2
p1

)1/γ

− p2

)

2) D’après l’expression (7.22) de la chaleur fournie pour un processus isobare,

Q23 = ∆H23 = (c+ 1)NR

∫ T3

T2

dT = (c+ 1) NR (T3 − T2)

Compte tenu de l’équation d’état (5.47) du gaz parfait,

p2V2 = NRT2 et p3V3 = NRT3

de la propriété d’un processus isobare,

p3 = p2

et de la propriété (5.90) d’un processus adiabatique,

p1V
γ
1 = p2V

γ
2 ⇒ V2 =

(
p1
p2

)1/γ

V1

la chaleur fournie Q23 est mise sous la forme,

Q23 = (c+ 1) (p3V3 − p2V2) = (c+ 1) p2 (V3 − V2)

= (c+ 1) p2

(
V3 −

(
p1
p2

)1/γ

V1

)

Fig. 7.6 Diagramme (T, S) du cycle moteur de Brayton.

3) D’après la définition (7.23) de la variation d’entropie pour un processus
isobare, de l’équation d’état (5.47) du gaz parfait et de la propriété d’un
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processus adiabatique énoncée précédemment, on obtient,

∆S41 =

∫ 1

4

dH

T
= (c+ 1)NR

∫ T1

T4

dT

T
= (c+ 1)NR ln

(
T1
T4

)
= (c+ 1)NR ln

(
V1
V4

)
= (c+ 1)NR ln

((
p1
p2

)1/γ
V1
V3

)
4) En inversant l’expression (7.12) de la variation d’entropie pour un processus

adiabatique, ces processus sont représentées par des droites verticales sur
un diagramme (T, S). En inversant l’expression (7.23) de la variation d’en-
tropie pour un processus isobare, on en déduit que les processus isobares
sont des exponentielles sur un diagramme (T, S) (fig. 7.6).

7.7 Cycle calorifique de Stirling

Un gaz parfait subit quatre processus réversibles formant le cycle calorifique de
Stirling (fig. 7.7) :

1→ 2 compression isotherme,

2→ 3 détente isochore,

3→ 4 détente isotherme,

4→ 1 détente isochore.

Les volumes minimal V − et maximal V + ainsi que les températures de la source
chaude T+ et de la source froide T− sont supposés connus.

Fig. 7.7 Diagramme (p, V ) du cycle calorifique de Stirling.

1) Déterminer les travaux W12 et W34 effectués lors de la compression 1→ 2
et de la détente 3→ 4 isothermes.

2) Déterminer les chaleurs fournies Q12, Q23, Q34 et Q41 lors de tous les
processus et en déduire la chaleur fournie Q durant un cycle.
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3) Déterminer l’efficacité de refroidissement ε− du cycle calorifique.

4) Esquisser le diagramme (T, S) du cycle.

7.7 Solution

1) D’après la définition (7.15), les travaux effectués par les processus iso-
thermes à températures T+ et T− sont donnés par,

W12 = −
∫ 2

1

p dV = −NRT+

∫ V −

V +

dV

V
= −NRT+ ln

(
V −

V +

)
W34 = −

∫ 4

3

p dV = −NRT−
∫ V +

V −

dV

V
= −NRT− ln

(
V +

V −

)
2) D’après la définition (7.16), les chaleurs fournies par les processus iso-

thermes à température T+ et T− s’écrivent,

Q12 = −W12 = NRT+ ln

(
V −

V +

)
Q34 = −W34 = NRT− ln

(
V +

V −

)
D’après la définition (7.19), les chaleurs fournies par les processus isochores
à volume V + et V − sont données par,

Q23 = ∆U23 = cNR

∫ T−

T+

dT = cNR
(
T− − T+

)
Q41 = ∆U41 = cNR

∫ T+

T−
dT = cNR

(
T+ − T−)

La chaleur fournie Q durant un cycle est la somme des chaleurs fournies
durant les quatre processus,

Q = Q12 +Q23 +Q34 +Q41 = −NR
(
T+ − T−) ln

(
V +

V −

)
< 0

3) Compte tenu du fait que la chaleur extraite de la source froide à tempéra-
ture T− est Q− = Q34 et que le travail effectué sur un cycle est opposé à
la chaleur fournie durant ce cyle, i.e. W = −Q, l’efficacité de refroidisse-
ment (7.42) s’écrit,

ε− =
Q34

W
= − Q34

Q
=

NRT− ln

(
V +

V −

)
NR (T+ − T−) ln

(
V +

V −

) =
T−

T+ − T−

qui est égale à l’efficacité de refroidissement (7.49) du cycle de Carnot.

4) La définition (7.17) implique que les processus isothermes soient des droites
horizontales sur un diagramme (T, S). En inversant la définition (7.20)
de la variation d’entropie pour un processus isochore, on en déduit que
les processus isochores sont des exponentielles sur un diagramme (T, S)
(fig. 7.8).
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Fig. 7.8 Diagramme (T, S) du cycle calorifique de Stirling.

7.8 Cycle moteur de Diesel

Un gaz parfait subit quatre processus réversibles formant le cycle moteur de
Diesel (fig. 7.9) :

1→ 2 compression adiabatique,

2→ 3 détente isobare,

3→ 4 détente adiabatique,

4→ 1 compression isochore.

La pression p1 ainsi que les volumes V1, V2 et V3 sont supposés connus.

Fig. 7.9 Diagramme (p, V ) du cycle moteur de Diesel.

1) Déterminer les pressions p2 et p4.

2) Déterminer les variations d’entropie ∆S12, ∆S23, ∆S34 et ∆S41 lors de tous
les processus et en déduire la variation d’entropie ∆S pour un cycle.
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3) Déterminer les variations d’énergie interne ∆U12, ∆U23, ∆U34 et ∆U41 lors
de tous les processus et en déduire la variation d’énergie interne ∆U pour
un cycle.

7.8 Solution

1) Compte tenu de la propriété (5.90) d’un processus adiabatique la pression
p2 s’écrit,

p1 V
γ
1 = p2 V

γ
2 ⇒ p2 = p1

(
V1
V2

)γ
De plus, le processus isobare est caractérisé par des pressions égales, i.e.
p2 = p3, et le processus isochore par des volumes égaux, i.e. V4 = V1. Ainsi
la pression p4 s’écrit,

p3 V
γ
3 = p4 V

γ
4 ⇒ p4 = p3

(
V3
V4

)γ
= p2

(
V3
V1

)γ
= p1

(
V3
V2

)γ
2) A l’aide des définitions (5.68), (7.12), (7.20) et (7.23), les variations d’en-

tropie ∆S12, ∆S23, ∆S34 et ∆S41 lors de tous les processus sont données
par,

∆S12 = 0

∆S23 =

∫ 3

2

dH

T
= (c+ 1)NR

∫ T3

T2

dT

T
= (c+ 1)NR ln

(
T3
T2

)
= (c+ 1)NR ln

(
V3
V2

)
∆S34 = 0

∆S41 =

∫ 1

4

dU

T
= cNR

∫ T1

T4

dT

T
= cNR ln

(
T1
T4

)
= cNR ln

(
p1
p4

)
On en déduit que la variation d’entropie ∆S sur un cycle est nulle,

∆S = ∆S12 + ∆S23 + ∆S34 + ∆S41 = 0

qui est une conséquence du fait que l’entropie S est une fonction d’état.

3) Compte tenu de l’équation d’état (5.47) du gaz parfait et de la défini-
tion (7.10), la variation d’énergie interne ∆Uif lors d’un processus réver-
sible i→ f est donnée par,

∆Uif = cNR

∫ Tf

Ti

dT = cNR (Tf − Ti) = c (pfVf − piVi)
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Ainsi, les variations d’énergie interne ∆U12, ∆U23, ∆U34 et ∆U41 lors de
tous les processus sont données par,

∆U12 = c (p2V2 − p1V1) = c p1

((
V1
V2

)γ
V2 − V1

)
∆U23 = c (p3V3 − p2V2) = c p1

(
V1
V2

)γ
(V3 − V2)

∆U34 = c (p4V4 − p3V3) = c p1

((
V3
V2

)γ
V1 −

(
V1
V2

)γ
V3

)
∆U41 = c (p1V1 − p4V4) = c p1

(
V1 −

(
V3
V2

)γ
V1

)
On en déduit que la variation d’énergie interne ∆U sur un cycle est nulle,

∆U = ∆U12 + ∆U23 + ∆U34 + ∆U41 = 0

qui est une conséquence du fait que l’énergie interne U est une fonction
d’état.

7.9 Cycle d’Otto

Le cycle d’Otto est un modèle de un moteur à combustion qui représente le
mode opératoire de la plupart des moteurs combustion non-diesel. Il est consti-
tué de quatre processus lorsque le moteur est modélisé comme un système
fermé, et de deux processus isobares supplémentaires lorsque le système est
ouvert. Ces deux processus correspondent à l’admission d’air et l’échappement
des gaz. Ainsi, on a,

• 0 −→ 1 admission isobare d’air

• 1 −→ 2 compression adiabatique

• 2 −→ 3 échauffement isochore

• 3 −→ 4 détente adiabatique

• 4 −→ 1 refroidissement isochore

• 1 −→ 0 échappement isobare des gaz

Supposer que les processus adiabatiques sont réversibles et que le gaz est un
gaz parfait caractérisé par le coefficient c (5.62) et le coefficient γ = (c+ 1) /c.
Les valeurs suivantes de certaines variables d’état sont supposées connues : la
pression p1, les volumes V1 = V4 et V2 = V3, la température T3 et le nombre
de moles N d’air à l’admission. Analyser ce cycle en utilisant les instructions
suivantes :

1) Esquisser les diagrammes (p, V ) et (T, S) du cycle. Sur le diagramme (p, V ),
représenter aussi les processus d’admission et d’échappement.

2) Décrire ce que le moteur fait durant chaque processus.
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3) Expliquer pourquoi un échange d’air avec l’extérieur est nécessaire.

4) Sur les diagrammes (p, V ) et (T, S) déterminer les relations entre les aires
délimitées par les cycles, le travail W et la chaleur Q par cycle.

5) Déterminer toutes les variables d’état aux points 1, 2, 3 et 4 du cycle, i.e.
trouver p2, p3, p4, T2 et T4.

6) Déterminer le travail W effectué par cycle et la chaleur Q échangée durant
un cycle.

7) Déterminer le rendement du cycle d’Otto,

ηO = − W

Q+

où Q+ = Q23.

7.9 Solution

V1V2

p

V

3

2

1

4

Fig. 7.10 Diagramme (p, V ) d’Otto

S1 S3
S

T
3

4

2

1 V=V1

V=V2

Fig. 7.11 Diagramme (T, S) d’Otto

1) Pour les processus isobares, p (V ) = p1 = p2 = cste (fig. 7.10). Pour les
processus adiabatiques, d’après la relation (5.90), p (V ) = cste/V γ où γ > 1
et cste = p1 V

γ
1 = p2 V

γ
2 ou cste = p3 V

γ
3 = p4 V

γ
4 . La pression p (V ) est une

fonction convexe monotone décroissante de V . Pour les processus isochores,
V = V2 = V3 = cste ou V = V4 = V1 = cste.
Pour les processus adiabatiques, S = S1 = S2 = cste et S = S3 = S4 = cste
(fig. 7.11). Pour les processus isochores, d’après la relation (7.20), T (S) =
T1 exp ((S − S1) /cNR) et T (S) = T2 exp ((S − S2) /cNR), qui sont des
fonctions monotones croissantes de S.

2) Durant l’admission isobare d’air 0 −→ 1, une masse d’air est amenée dans le
cylindre à pression atmosphérique constante p1 lorsque le piston se déplace
et le volume à l’intérieur du cylindre augmente de V2 à V1. Durant la com-
pression adiabatique 1 −→ 2, l’air à l’intérieur du cylindre est comprimé
adiabatiquement par le piston d’un volume initial V1 à un volume final V2.
Durant le chauffage isochore 2 −→ 3, le mélange d’air et de carburant est
allumé. Durant la détente adiabatique 3 −→ 4, la gaz subit une expan-
sion adiabatique du volume initial V3 au volume final V4, ce qui ramène
le piston dans sa position initiale. A cet instant, le gaz occupe un volume
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V4. Durant le refroidissement isochore 4 −→ 1, la chaleur est transférée à
l’environment jusqu’à ce que la pression parvienne à nouveau à la pression
atmosphérique p1. Finalement, durant l’échappement isobare 4 −→ 0, le
gaz est retiré du cylindre à pression atmosphérique constante p1 sous l’effet
du déplacement du piston, ce qui provoque une diminution du volume à
l’intérieur du cylindre de V1 à V2.

3) Un moteur qui fonctionne selon le cycle d’Otto est un moteur à combustion.
Cela signifie que l’oxygène est essentiel pour que la réaction de combustion
chimique puisse avoir lieu. Après chaque allumage, de l’air frais doit entrer
dans le cylindre afin de permettre à une nouvelle réaction de combustion
d’avoir lieu.

4) L’air délimitée par le cycle dans le diagramme (p, V ) s’écrit,∮
p dV =

∫ V2

V1

p dV +

∫ V4

V3

p dV = −W12 − W34 = −W

étant donné que W23 = W41 = 0. Ainsi, l’aire délimitée par le cycle dans le
diagramme (p, V ) représente l’opposé du travail W effectué par cycle.
L’air délimitée par le cycle dans le diagramme (T, S) s’écrit,∮

T dS =

∫ S3

S2

T dS +

∫ S1

S4

T dS = Q23 +Q41 = Q

étant donné que Q12 = Q34 = 0. Ainsi, l’aire délimitée par le cycle dans
le diagramme (T, S) représente la chaleur Q échangée par cycle. Comme
l’énergie interne U est une fonction d’état, on doit avoir Q = −W , en
accord avec la relation (7.6).

5) A l’aide de la relation (5.90) et de l’équation d’état du gaz parfait (5.47),
les pressions sont données par,

p2 = p1

(
V1
V2

)γ
p3 =

N RT3
V2

p4 =
N RT3
V1

(
V2
V1

)γ− 1

et les températures par,

T1 =
p1 V1
N R

T2 =
p1 V1
N R

(
V1
V2

)γ− 1

T4 = T3

(
V2
V1

)γ− 1

6) D’après la relation (7.14), les travaux effectués durant la compression et la
détente adiabatique s’écrivent,

W12 = ∆U12 = cNR

∫ T2

T1

dT = cNR (T2 − T1)

W34 = ∆U34 = cNR

∫ T4

T3

dT = cNR (T4 − T3)

Le travail effectué par cycle est donné par,

W = W12 +W34 = cNR (T4 − T3 + T2 − T1)
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D’après la relation (7.19), les chaleurs échangées durant le échauffement et
le refroidissement isochores s’écrivent,

Q23 = ∆U23 =

∫ U3

U2

dU = cNR

∫ T3

T2

dT = cNR (T3 − T2)

Q41 = ∆U41 =

∫ U1

U4

dU = cNR

∫ T1

T4

dT = cNR (T1 − T4)

La chaleur échangée par cycle est donnée par,

Q = Q23 +Q41 = cNR (T3 − T2 + T1 − T4)

7) A l’aide de la définition du rendement (7.38), on obtient,

ηO = − W

Q+
= − W

Q23
= − c (T4 − T3 + T2 − T1)

c (T3 − T2)
= 1− T4 − T1

T3 − T2

7.10 Cycle d’Atkinson

James Atkinson était un ingénieur anglais qui a conçu plusieurs moteurs à
combustion. Le cycle thermodynamique qui porte son nom est une modification
du cycle d’Otto conçue pour améliorer son rendement. Le prix à payer pour
parvenir à un meilleur rendement est une diminution du travail effectué par
cycle. Le cycle idéalisé d’Atkinson est constitué des quatre processus réversibles
suivants :

• 1 −→ 2 : compression adiabatique

• 2 −→ 3 : échauffement isochore

• 3 −→ 4 : échauffement isobare

• 4 −→ 5 : détente adiabatique

• 5 −→ 6 : refroidissement isochore

• 6 −→ 1 : refroidissement isobare

On suppose que les processus adiabatiques sont réversibles et que le cycle a lieu
sur un gaz parfait est caractérisé par,

p V = N RT U = cN RT γ =
c+ 1

c

Les grandeurs physiques suivantes qui caractérisent le cycle sont supposées
connues : volumes V1, V2 et V6, pressions p1 et p3, température T5 et le nombre
de moles N de gas. Analyser ce cycle en utilisant les instructions suivantes :

1) Esquisser le diagramme (p, V ) du cycle d’Atkinson.

2) Déterminer les pressions p2, p4, p5, p6, les volumes V3, V4, V5 et les tempé-
ratures T1, T2, T3, T4, T6, en termes des grandeurs physiques connues.
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3) Déterminer les travaux W12, W23, W34, W45, W56, W61 et le travail W
effectué par cycle.

4) Déterminer les transferts de chaleur Q12, Q23, Q34, Q45, Q56, Q61 et la
chaleur Q+ = Q23 +Q34 fournie au gaz.

5) Déterminer le rendement du cycle d’Atkinson,

ηA = − W

Q+

7.10 Solution

V1V2 V6

V

p

p3

p1

Q23

Q61

Q56

Q34

1

2

3 4

5

6

Fig. 7.12 Diagramme (p, V ) du cycle d’Atkinson

1) Pour le processus adiabatique, d’après la relation (5.90), p (V ) = cste/V γ

où γ > 1 et cste = p1 V
γ
1 = p2 V

γ
2 ou cste = p4 V

γ
4 = p5 V

γ
5 . La pression

p (V ) est une fonction convexe monotone décroissante de V (fig. 7.12). Pour
les processus isochores, V = V2 = V3 = cste or V = V5 = V6 = cste. Pour
les processus isobares, p (V ) = p3 = p4 = cste ou p (V ) = p6 = p1 = cste.

2) A l’aide de la relation (5.90) et de l’équation d’état du gaz parfait (5.47),
les pressions sont données par,

p2 = p1

(
V1
V2

)γ
p4 = p3 p5 =

N RT5
V6

p6 = p1

et les volumes par,

V3 = V2 V4 =

(
N RT5
p3

) 1
γ

V
γ− 1
γ

6 V5 = V6
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Les températures s’écrivent,

T1 =
p1 V1
N R

T2 =
p1 V1
N R

(
V1
V2

)γ− 1

T3 =
p3 V3
N R

T4 =

(
p3 V6
N R

) γ− 1
γ

T
1
γ

5 T6 =
p1 V6
N R

3) D’après la relation (7.14), les travaux effectués durant la compression adia-
batique et la détente adiabatique s’écrivent,

W12 = ∆U12 = cNR

∫ T2

T1

dT = cNR (T2 − T1)

W45 = ∆U45 = cNR

∫ T5

T4

dT = cNR (T5 − T4)

D’après la relation (7.18), il n’y a pas de travail effectués durant l’échauf-
fement isochore et le refroidissement isochore,

W23 = W56 = 0

D’après la relation (7.21), les travaux effectués durant les processus isobares
s’écrivent,

W34 = −
∫ 4

3

p dV = − p3
∫ V4

V3

dV = − p3 (V4 − V3) = NR (T4 − T3)

W61 = −
∫ 1

6

p dV = − p1
∫ V1

V6

dV = − p1 (V1 − V6) = NR (T1 − T6)

Le travail effectué par cycle s’écrit,

W = W12 +W34 +W45 +W61

= cNR (T2 − T1 + T5 − T4) +NR (T4 − T3 + T1 − T6)

4) D’après la relation (7.13), il n’y a pas d’échange de chaleur durant la com-
pression adiabatique et la détente adiabatique,

Q12 = Q45 = 0

D’après la relation (7.19), les chaleurs échangées durant l’échauffement iso-
chore et le refroidissement isochore sont données par,

Q23 = ∆U23 =

∫ U3

U2

dU = cNR

∫ T3

T2

dT = cNR (T3 − T2)

Q56 = ∆U56 =

∫ U6

U5

dU = cNR

∫ T6

T5

dT = cNR (T6 − T5)
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D’après la relation (7.22), les chaleur échangées durant les processus iso-
bares s’écrivent,

Q34 = ∆H34 =

∫ H4

H3

dH = (c+ 1)NR

∫ T4

T3

dT = (c+ 1) NR (T4 − T3)

Q61 = ∆H61 =

∫ H1

H6

dH = (c+ 1)NR

∫ T1

T6

dT = (c+ 1) NR (T1 − T6)

La chaleur fournie au réservoir chaud s’écrit,

Q+ = Q23 +Q34 = cNR (T3 − T2) + (c+ 1) NR (T4 − T3)

5) A l’aide de la définition du rendement (7.38), on obtient,

ηA = − W

Q+
= − c (T2 − T1 + T5 − T4) + (T4 − T3 + T1 − T6)

c (T3 − T2) + (c+ 1) (T4 − T3)

=
(T1 − T2 + T4 − T5) + (γ − 1) (T3 − T4 + T6 − T1)

(T3 − T2) + γ (T4 − T3)

7.11 Cycle calorifique

Un gaz parfait caractérisé par le coefficient c (5.62) et le coefficient γ =
(c+ 1) /c subit un cycle calorifique constitué de quatre processus réversibles
(fig. 7.13) :

• 1 −→ 2 : compression adiabatique

• 2 −→ 3 : compression isobare

• 3 −→ 4 : refroidissement isochore

• 4 −→ 1 : détente isobare

Analyser ce cycle en utilisant les instructions suivantes :

1) Déterminer le volume V2 en termes des volumes V1 et V3 et des pressions
p1 et p2.

2) Déterminer la variation d’entropie ∆S23 durant la compression isobare.

3) Déterminer la chaleur échangée Q23 durant la compression isobare.

4) Supposer à présent qu’au lieu d’un gaz parfait on a utilisé un fluide qui est
entièrement dans un état gazeux au point 2 et entièrement dans un état
liquide au point 3. La compression isobare 2 −→ 3 est alors une transition
de phase qui a lieu à la température T et qui est caractérisée par la chaleur
latente molaire de vaporisation ``g. Déterminer la variation d’entropie ∆S23

durant la transition de phase en termes du nombre de moles N de fluide, du
volume V2, de la pression p2 et de la chaleur latente molaire de vaporisation
``g, en supposant que p V = NRT dans la phase gazeuse.



Cycle calorifique 23

1
4

3 2

V1 V2 V3

p2

p1

V

p

Fig. 7.13 Diagramme (p, V ) du cycle calorifique

7.11 Solution

1) A l’aide de la condition d’adiabacité (5.90), le volume V2 s’écrit,

V2 = V1

(
p1
p2

) 1
γ

2) D’après la relation (7.23), la variation d’entropie durant la compression
isobare est donnée par,

∆S23 =

∫ S3

S2

dS = (c+ 1)NR

∫ T3

T2

dT

T
= (c+ 1)NR ln

(
T3
T2

)
3) D’après la relation (7.22), la chaleur échangée durant une compression iso-

bare s’écrit,

Q23 = ∆H23 =

∫ H3

H2

dH = (c+ 1)NR

∫ T3

T2

dT = (c+ 1) NR (T3 − T2)

4) D’après la relation (2.43), pour une processus isotherme comme une tran-
sition de phase à la température T ,

Q23 = T

∫ S3

S2

dS = T (S3 − S2) = T ∆S23

D’après les relations (6.44), (6.45) et l’équation d’état du gaz parfait (5.47),

∆S23 =
Q23

T
= − Q`g

T
= − N ``g

T
= − N2R``g

p2 V2
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7.12 Cycle de Rankine

Un gaz parfait caractérisé par le coefficient c (5.62) et le coefficient γ =
(c+ 1) /c subit un cycle moteur de Rankine constitué de quatre processus ré-
versibles :

• 1 −→ 2 : détente isobare

• 2 −→ 3 : détente adiabatique

• 3 −→ 4 : compression isobare

• 4 −→ 1 : compression adiabatique

Ainsi, le cycle est représenté par un rectangle dans un diagramme (T, S)
(fig.7.14).

p1

p3

S1 S2

1 2

4 3

p

S

Fig. 7.14 Diagramme (T, S) d’un cycle de Rankine pour un gaz parfait.

Analyser ce cycle en utilisant les instructions suivantes :

1) Esquisser le diagramme (p, V ) du cycle de Rankine pour un gaz parfait.

2) Déterminer les travaux effectués W12, W23, W34 et W41 et le travail effectué
par cycle W en termes des enthalpies H1, H2, H3 et H4.

3) Déterminer la chaleur fournie au réservoir chaud Q+ = Q12 en termes des
enthalpies H1, H2, H3 et H4.

4) Déterminer le rendement du cycle de Rankine pour un fluide parfait défini
comme,

ηR = − W

Q+

7.12 Solution

1) Pour les processus isobares, p (V ) = p1 = p2 = cste or p (V ) = p3 = p4 =
cste (fig. 7.15). Pour les processus adiabatiques, d’après la relation (5.90),
p (V ) = cste/V γ où γ > 1 et cste = p1 V

γ
1 = p4 V

γ
4 ou cste = p2 V

γ
2 =

p3 V
γ
3 . La pression p (V ) est une fonction convexe monotone décroissante

de V .
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p1

p3

p

V

1

4 3

2

Fig. 7.15 Diagramme (p, V ) d’un cycle de Rankine.

2) D’après la relation (7.21), les travaux effectués durant la détente isobare et
la compression isobare sont donnés par,

W12 = −
∫ 2

1

p dV = − p
∫ V2

V1

dV = − p (V2 − V1) = −NR (T2 − T1)

W34 = −
∫ 4

3

p dV = − p
∫ V4

V3

dV = − p (V4 − V3) = −NR (T4 − T3)

D’après la relation (5.65), ces travaux peuvent être exprimés en fonctions
des enthalpies comme,

W12 =
1

c+ 1
(H1 − H2) =

γ − 1

γ
(H1 − H2)

W34 =
1

c+ 1
(H3 − H4) =

γ − 1

γ
(H3 − H4)

D’après la relation (7.14), les travaux effectués durant la détente adiaba-
tique et la compression adiabatique sont donnés par,

W23 = ∆U23 = cNR

∫ T3

T2

dT = cNR (T3 − T2)

W41 = ∆U41 = cNR

∫ T3

T2

dT = cNR (T1 − T4)

D’après la relation (5.65), ces travaux peuvent être exprimés en fonctions
des enthalpies comme,

W23 =
c

c+ 1
(H3 − H2) =

1

γ
(H3 − H2)

W41 =
c

c+ 1
(H1 − H4) =

1

γ
(H1 − H4)
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La travail effectué par cycle est donné par,

W = W12 +W23 +W34 +W41

=
γ − 1

γ
(H1 − H2 +H3 − H4) +

1

γ
(H3 − H2 +H1 − H4)

= H1 − H2 +H3 − H4

3) D’après la relation (7.22), la chaleur échangée durant la détente isobare est
donnée par,

Q+ = Q12 = ∆H12 = H2 − H1

4) A l’aide de la définition (7.38) du rendement, on obtient,

ηR = − W

Q+
= − W

Q12
= − H1 − H2 +H3 − H4

H2 − H1
= 1− H3 − H4

H2 − H1

7.13 Cycle de Rankine pour un fluide biphasique

Un moteur est constitué d’une chaudière, d’un condensateur, d’une turbine et
d’une pompe (fig. 7.16). Ce moteur subit un cycle de Rankine cycle pour un
fluide biphasique (fig. 7.17). Le cycle est constitué de cinq processus :

chaudière condensateur

corps de chauffe

turbine

pompe à eau

C

liquide

vapeur

Fig. 7.16 Diagramme du moteur de Rankine pour un fluide biphasique.

• 1 −→ 2 : Le fluide sortant de la turbine est entièrement condensé (1). Le
liquide subit alors une compression isentropique d’une pression initiale p1
à une pression finale p2.

• 2 −→ 3 : Le liquide est chauffé à pression constante p2 par la chaudière. Il
subit un échauffement isobare jusqu’à ce qu’il parvienne à la température
de vaporisation (3).
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S1
S

T

1

2

5

4

p1

p2
p2

3
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Fig. 7.17 Diagramme (T, S) du cycle de Rankine pour un fluide biphasique.

• 3 −→ 4 : Le liquide est vaporisé à pression constante p2. Il subit une tran-
sition de phase jusqu’à la vaporisation complète (4).

• 4 −→ 5 : Le gaz subit une détente isentropique d’une pression initiale p2 à
une pression finale p1.

• 5 −→ 1 : Le gaz est condensé à pression constante p1. Il subit une transition
de phase jusqu’à la condensation complète (1).

Analyser ce cycle en utilisant les instructions suivantes :

1) Déterminer la chaleur fournie par la chaudière Q+ = Q23 +Q34, la chaleur
libérée au condensateur Q− = Q51 en termes des enthalpies par unité de
masse h∗1, h∗2, h∗4 et h∗5 et la masse M de fluide qui subit ce cycle (fig. 7.17).

2) Déterminer le travail effectué par la pompe W12 et le travail effectué sur
la turbine W45 en termes des enthalpies par unité de masse h∗1, h∗2 et h∗5 et
de la masse M en utilisant les résultats obtenus pour le système présenté
en sect. 4.14 et en supposant que la puissance mécanique est égale à la
puissance chimique PC du fluide traversant la pompe et la turbine, i.e.
PW = PC .

3) Déterminer le rendement du cycle de Rankine pour un fluide biphasique
défini comme,

ηR = − W

Q+

7.13 Solution

1) Le chauffage isochore et la vaporisation ont lieu à pression constante p2.
D’après la relation (4.61), la chaleur fournie par la chaudière s’écrit,

Q+ = Q23 +Q34 = ∆H23 + ∆H34 = ∆H24 = M (h∗4 − h∗2)

La condensation a lieu à pression constante p1. D’après la relation (4.61),
la chaleur fournie au condensateur est donnée par,

Q− = Q51 = ∆H51 = M (h∗1 − h∗5)
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2) Au vu de l’expression obtenue pour la puissance chimique PC exercée sur
un système ouvert dû au transfert de matière (sect. 4.14) et on supposant
que la puissance mécanique PW est due à la puissance chimique PC du
fluide circulant dans la pompe ou la turbine, on obtient,

PW = PC = Ṁ
(
h∗f − h∗i

)
où Ṁ est le débit de masse, h∗i et h∗f sont les enthalpies initiales et finales
par unité de masse qui sont constantes. En intégrant ce résultat par rapport
au temps, on trouve le travail effectué durant le processus i −→ f,

Wif = M
(
h∗f − h∗i

)
Ainsi, le travail W12 effectué par la pompe sur le fluide est,

W12 = M (h∗2 − h∗1)

et le travail W45 effectué par le fluide sur la turbine est,

W45 = M (h∗5 − h∗4)

3) A l’aide de la définition du rendement (7.38), on obtient,

ηR = − W

Q+
= − W12 +W45

Q+
= − h∗2 − h∗1 + h∗5 − h∗4

h∗4 − h∗2
= 1− h∗5 − h∗1

h∗4 − h∗2


