CHAPITRE 7

Machines thermiques

7.1 Réfrigérateur

Un réfrigérateur se refroidit en rejetant de la chaleur dans ’environnement a
température TF. La puissance mécanique fournie au dispositif est Py et la
puissance thermique, décrivant le transfert de chaleur a ’environnement, est
FPg. Déterminer la température la plus basse 7'~ que le systéme peut atteindre
s’il a une efficacité maximale.

Application numérique

Py =100W, Py =350W et T = 25° C.

Solution

La température la plus basse que le systeme peut atteindre est obtenue lorsque
le réfrigérateur opere selon un cycle calorifique de Carnot. Alors, lefficacité de
refroidissement (7.42) d’un cycle de Carnot est donnée par (7.49),

PQ T

5_ —_—_—
¢ Py Tt-—T-
Ainsi, la température la plus basse T~ s’écrit,

Fq

=—= __T+t=_41°C
PQ-l-PW

T

7.2 Centrale nucléaire refroidie par une riviere

Une centrale nucléaire opere entre un réservoir chaud constitué d’une chambre
a combustion ou d’un réacteur nucléaire et un réservoir froid constitué de ’eau
d’une riviere. Elle est modélisée comme une machine thermique opérant entre le
réservoir chaud & température T et un réservoir froid & température 7~. Ana-
lyser le fonctionnement de cette centrale nucléaire en suivant les instructions
suivantes :
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1) Déterminer le rendement maximal n¢ de cette centrale nucléaire et la puis-
sance thermique Pg+ décrivant 1’échange de chaleur avec la chambre de
combustion.

2) Supposer que le rendement réel est n = knc et déterminer la puissance
thermique Pg- décrivant I’échange de chaleur avec la riviere.

3) Déterminer la différence de température AT avec I’eau s’écoulant avec un
débit V' dans la riviere. L’eau a une masse volumique m et une chaleur
spécifique par unité de masse a pression constante cy.

Application numérique

Py = —750 MW, T+ = 300°C, T~ = 19°C, k = 60%, V = 200m3/s,
m = 1000kg/m? et ¢; = 4181 J/kg K.

Solution

On a principalement examiné des cycles thermodynamiques constitués de pro-
cessus distincts dans le chapitre 7. Ici, on considére une centrale nucléaire
comme une machine thermique en régime stationnaire. Ainsi, il est plus naturel
de la caractériser par sa puissance mécanique Py, par la puissance thermique
Pg+ au réservoir chaud et par la puissance thermique Pg- au réservoir froid.

1) Le rendement maximal est le rendement du cycle de Carnot (7.46). On peut
exprimer le rendement (7.38) en termes des puissances. Ainsi,

Py T
— =1— —=49
Py 7w~ A%

Nnc =

Par conséquent, la puissance thermique Pg+ qui décrit I'échange de chaleur
avec le réservoir chaud est donné par,

-+

— =153 GW

T
Por =—Pw 7=

2) Comme la centrale nucléaire est en régime stationnaire, le premier prin-
cipe (1.29) s’écrit,
U=Pw+ Py+ +Py- =0

ce qui implique que,
Po- = — (Pw + Pgo+)

Le rendement (7.38) s’écrit,

Py o Py
=knc =— ainsi Poy = ——
n Ule} Por Q+ kno

Ainsi,
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3) Etant donné que la masse d’eau M est le produit de la masse volumique
de I'eau m et du volume V, le débit de masse est donné par,

M=mV
La puissance thermique s’écrit,
Po- :Mc;AT:ch;AT
ce qui implique que la différence de température est donnée par,

Py
AT =9 _ 9
ch;

7.3 Cycle de freinage

Un systeme est constitué d’un cylindre vertical dont la section supérieure est
scellée et dont la section inférieure est fermée par un piston. Une soupape A
placée sur la section supérieure controle I'entrée de gaz et une autre soupape
B (située a coté de la soupape A) est retenue par un ressort qui exerce une
pression constante py sur la soupape. Le systéme subit les processus suivants :

e 0 — 1 : Le piston est au sommet du cylindre ; la soupape A s’ouvre et le
piston est abaissé de sorte que du gaz a pression atmosphérique py = p1
est amené dans le cylindre. Le gaz est a une température T7. La soupape
B est fermée. Le volume maximal occupé par le gaz est V7.

e 1 — 2 : La soupape A est maintenant fermée et le piston monte suffi-
samment rapidement pour que le processus puisse étre considéré comme
adiabatique. La soupape B reste fermée durant la montée du piston aussi
longtemps que la pression du gaz est inférieure a ps. Alors que le piston
continue de monter, le gaz atteint la pression po = 10p; a température Th
dans un volume V5. On suppose que ce processus est réversible, donc les
relations (5.90) et (5.83) s’appliquent.

e 2 — 3 : Alors que le piston continue de monter, la soupape B s’ouvre, la
pression est p3 = po et le gaz est rejeté dans I'environnement. La soupape
A reste fermée jusqu’a ce que le piston atteigne le sommet, ou V3 = V5 = 0.

e 3 — 0 : La soupape B se ferme et la soupape A s’ouvre. Le systeme est
alors prét pour le prochain cycle.

Analyser le cycle en utilisant les instructions suivantes :

1) Esquisser le diagramme (p, V') pour les trois processus que le systéme subit.
2) Déterminer la température Ts et le volume V5.

3) Déterminer le travail W effectué par cycle.



4 Machines thermiques
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L
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Fig. 7.1 Diagramme (p,V) du cycle de freinage.

Application numérique

Vo=Vs=0,pg=p; =10°Pa, V; =0.251, T} =27°Cet v = 1.4.

Solution

1) Le diagramme (p,V) est constitué d’une détente isobare 0 — 1, d’une
compression adiabatique 1 — 2, d’une contraction isobare 2 — 3, et
d’une détente isochore 3 — 0 (fig. 7.1).

2) Pour la compression adiabatique, la condition d’adiabacité (5.83) s’écrit,

Y 1=y oy 1=y
TV py = 1o Do

ce qui implique que,

1— v 1— v

1
=1 (2) " =n(=) " =s5m9K
P2 10

La condition d’adiabacité (5.90) s’écrit,

Vi =p V'

ce qui implique que,

1 1
5 1 g
V= (2) 2w (=) =o00481
p2 10

3) Le travail effectué sur le gaz durant un cycle entier est la somme des travaux
effectués durant les quatre processus,

W = Wo1 + Wia + Was + Wy
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Le travail effectué durant le processus isobare est,
V1 0
W(J1+W23:—p1/ dV—p2/ AV =—p1 Vi +p2 V2
0 Va

Il n’y a pas de travail effectué durant le processus isochore,

Le travail effectué durant le processus adiabatique est,

V2 V2 qv plv'y 1 1
W12=—/ pdV:_pl‘/’y/ — = L (V_PY—V_7>
v 1 | 2 1
1

Zﬁ(mvz—mvﬂ

Ainsi,

W=—"" (Vo= p Vi) = —— p1 (10V5 — V4) = 80.5kJ
v—1 v—1

Vu que le travail W est positif, le systéme se comporte comme un frein qui
s’oppose au mécanisme d’entrainement du piston

7.4 Expérience de Clément-Desormes

Il est possible de déterminer le coefficient v d’un gaz parfait en mesurant les
pressions obtenues a ’aide d’une série de processus thermiques connus sous le
nom d’expérience de Clément-Desormes. " Contrairement & la définition qui
en est faite habituellement, ici on considére que le gaz reste confiné dans une
enceinte dont on fait varier le volume (fig. 7.2).

Le tube en U permet de mesurer la pression du gaz grace au déplacement
d’un liquide a I'intérieur du tube. Le volume du tube est négligeable par rapport
au volume V' de la sphere. Initialement, la vanne est ouverte et la pression pg
est la pression atmosphérique, la température Ty est la température ambiante
et le volume V) est le volume total de gaz dans la spheére et la seringue. Ensuite,
on ferme la vanne et le gaz qui se trouve dans la seringue est lentement injecté
dans la sphere. Ce processus est une compression isotherme. On mesure alors
la différence de la pression du gaz Ap; entre la pression intermédiaire p; et la
pression initiale pg. Ensuite, on retire le piston de la seringue aussi rapidement
que possible afin de ramener la pression du gaz dans la sphere a sa valeur initiale
po- Ce processus est une détente adiabatique. A la fin de la détente adiabatique,
le volume de gaz dans la sphere et la seringue est V5 et le systéme atteint un
état d’équilibre thermique durant une compression isochore. On mesure alors

™ G. Bruhat, Thermodynamique, Masson et Cie, 6° édition, 1968, p. 173
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Fig. 7.2 Dans une mise en oeuvre particuliecre de la méthode de Clément-Desormes pour
mesurer le coefficient v d’'un gaz, un tube en U est utilisé pour mesurer les variations de
pression, et une seringue assure que les processus aient lieu avec une quantité de gaz fixée.

la différence de pression Aps entre la pression finale py et la pression initiale py.
Montrer que les différences de pressions mesurées peuvent étre utilisées pour
déterminer le coefficient v d’apres la relation,

N Apy
-~ Apy — Aps

Cette approximation est satisfaite dans la limite o Ap; < pg et Aps < py.
Utiliser un développement limité au 1" ordre en Ap;/po et Aps/po pour établir
ce résultat.

Solution

Dans I’état initial, le gaz parfait a un volume V[, une pression py et une tem-
pérature Ty. D’apres ’équation d’état (5.47) d’un gaz parfait,

poVo = NRTj

A la fin du processus de compression isotherme a température Tj, le gaz parfait
a une pression p; et il est entierement contenu dans la sphere de volume V.
D’apres Iéquation d’état (5.47) d’un gaz parfait,

pr = NRTO

A la fin du processus de détente adiabatique, la pression du gaz parfait est
égale a la pression initiale py et le volume de gaz dans la sphere et la seringue
est V5. D’apres 'équation (5.90),

p1 V7Y = poVy

A la fin du processus de compression isochore a volume Va, la pression du gaz
parfait est po et la température du gaz dans la sphére et la seringue est égale a
la température initiale Ty. D’apreés 1'équation (5.47),

p2Vo = NRTy
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Des équations précédentes, on tire que,
() - (k) - Gi)
Do Vv p2  NRTy Do P2
En utilisant les définitions p; = pg + Ap1 et ps = pg + Aps, expression précé-

dente devient,
A A K A -7
1+pl(1+pl> (1+Z72)
Po Po Po

Vu que les variations de pression sont faibles par rapport a la pression initiale,
ie. Ap; < po et Aps < po, le développement au 1°* ordre en Apy/po et Aps/po

s’écrit,
A A A
L4 An (1+7171) (1_ 7192)
Po Po Po

A A A Ap; A
1+p1:1+7<pl_ m)_yzplpz
bo bo Do Po  Po

ol le dernier terme est un terme du 2°¢ ordre que l'on peut négliger. Ainsi, on
obtient la relation,

ou encore,

Apr >~ v (Ap1 — Apo)
ce qui implique que,
o Apy
Ap; — Aps

7.5 Cycle de Lenoir

Le cycle Lenoir est un modele de fonctionnement de moteur a combustion qui
a été breveté par Jean Joseph Etienne Lenoir en 1860. Ce cycle est défini par
trois processus réversibles :
e 1 — 2 compression isochore
e 2 — 3 détente adiabatique
¢ 3 — 1 compression isobare
On suppose que le cycle est effectué sur un gaz parfait caractérisé par le coeffi-
cient ¢ (5.62). Les valeurs suivantes de certaines variables d’état sont supposées
connues : la pression pq, les volumes Vi et V3, la température T; et le nombre
de moles de gaz N. Analyser ce cycle en utilisant les instructions suivantes :
1) Esquisser les diagrammes (p, V') et (T',S) du cycle.
2) Déterminer la variation d’entropie AS15 du gaz durant le processus isochore
1 — 2
3) Exprimer la température T en termes de la chaleur échangée Q12 durant
le processus isochore 1 —» 2.
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Déterminer la pression ps en termes de la pression pq, le volume V; et la
chaleur échangée @Q12.

Déterminer la pression p3 en termes de la pression ps et des volumes V5 et
Vs.

Déterminer le travail W3 effectué durant le processus adiabatique 2 — 3
et la chaleur Q23 échangée durant ce processus.

Déterminer le travail W3y effectué durant le processus isobare 3 — 1 et la
chaleur Q31 échangée durant ce processus.

Etablir I’expression explicite du rendement de ce cycle iy, défini en confor-
mité avec la relation (7.38) comme,

- Was + Wa

= Q12

Exprimer le rendement 77, en termes des températures 17, To et T5.

Solution

PA

o

— 3

TA

] 2

Qa

{4 —

>V 1

! |
| |
| |
| |
| |
1 1 » 5

|
i
I
i
Sy

>
14 Vs S

Fig. 7.3 Diagramme (p, V') de Lenoir Fig. 7.4 Diagramme (7, S) de Lenoir

)

Pour le processus isochore, V = V; = Vo = cste (fig. 7.3). Pour le pro-
cessus adiabatique, d’apres la relation (5.90), p (V) = cste/V7Y oty > 1 et
cste = p1 V' = pa V. La pression p (V') est une fonction convexe monotone
décroissante de V. Pour le processus isobare, p (V) = p3 = p; = cste.
Pour le processus isochore, d’apres la relation (7.20), T(S) =
Tyexp ((S— S1)/cNR), qui est une fonction monotone croissante de
S (fig. 7.4). Pour le processus adiabatique, S = S; = Sy =
cste. Pour le processus isobare, d’aprés la relation (7.23), T (S) =
Tyexp ((S— S1)/(c+1) NR), qui est une fonction monotone croissante
de S.

D’apres la relation (7.20), le travail effectué durant le processus isochore
s’annule,

T |4
A =cNRIn|=|= 1) NRIn| —
Si12=cNR n<T1> (c+1) NR n<V3>
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3) D’apres la relation (7.19), la chaleur échangée durant le processus isochore
s’écrit,

U2 T2
ngzAUlgz/ dU:CNR/ dT:CNR(Tngl)
U1 Tl
Ainsi,
Q12
Ty =T,
2 1+ ‘NR
4) A laide de I’équation d’état du gaz parfait (5.47), la pression ps est donnée
par,
NRT, NR Q12 Q12
= = —_— T — -
P2 A " <1+CNR> p1+cV1

5) D’apres la relation (5.90) pour un processus adiabatique,

_ (Y
P3 = P2 Vs

6) D’apres les relations (7.14) et (7.13), le travail effectué durant le processus
adiabatique est donné par,

T3
W23:AU23:CNR/ dT:CNR(TngQ)
T

et il n’y a pas de chaleur échangée,

3
Q23=/ TdS =0
2

7) D’apres les relations (7.21) et (7.22) qui caractérisent le processus isobare,
le travail effectué peut s’écrire,

1 Vi
Wa=— [ paV=—p [V =-p (V- 15) =NR (5~ T)

et la chaleur échangée est donnée par,

Hy Th
Q31 = A H3 = dH = (c+1)NR dT = (c+ 1) NR(Ty — T3)
Hs T3
Ce transfert de chaleur n’a pas lieu durant un processus isotherme. Ainsi, il
ne peut pas étre décrit par un transfert de chaleur a un réservoir thermique.
8) A laide des résultats obtenus ci-dessus et compte tenu du coefficient v =
(¢ +1) /c, le rendement 7y, du cycle de Lenoir s’écrit,

nL:_WQ3+W31 _ C(TQ— T3)+(T1— Tg)
Q12 c(Ty — Th)
_T1+CT2—(C"‘].)Tg_(’y—1)T1+T2—’YT3_1_ T3—T1
- (T — 1) - T — T} I T )
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7.6 Cycle moteur de Brayton

Un gaz parfait subit quatre processus réversibles formant le cycle moteur de
Brayton (fig. 7.5) :

1 — 2 compression adiabatique,
2 — 3 expansion isobare,

3 — 4 détente adiabatique,

4 — 1 contraction isobare.

Les pressions p; et ps ainsi que les volumes Vi et V3 sont supposés connus.

'
Py p---- 2 > 3
N e I - 4
]
: ! :
v, v, v

Fig. 7.5 Digramme (p, V) du cycle moteur de Brayton.

1) Déterminer le travail effectué W3y lors de la détente adiabatique 3 — 4.
2) Déterminer la chaleur fournie Q23 lors de I’expansion isobare 2 — 3.

3) Déterminer la variation d’entropie ASy; lors de la contraction isobare
4 — 1.

4) Esquisser le diagramme (T, .S) du cycle.

Solution
1) D’apres l'expression (7.14) du travail effectué pour un processus adiaba-

tique,
Ty

W34=AU34:CNR dTZCNR(T4—T3)
T3

Compte tenu de I’équation d’état (5.47) du gaz parfait,
p3V3 = NRT3 et piVa=NRT,
des propriétés des processus isobares,
D3 = P2 et ps=p

et de la propriété (5.90) d’un procesus adiabatique,

D3 1/v Do 1/~
p3Vs = paVy) = Vi = <) Vs = () Vs
P4 D1
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le travail effectué W34 est mis sous la forme,
1/~
b2
Wiy = c(paVa — p3V3) = c(p1Va — p2V3) = Vs | py (p) - p2
1

2) D’apres 'expression (7.22) de la chaleur fournie pour un processus isobare,

T3
QQgZAHggz(C—I—l)NR dTZ(C+1) NR(T3—T2)
T>

Compte tenu de I’équation d’état (5.47) du gaz parfait,
p2Va = NRT3 et p3V3 = NRT3
de la propriété d’un processus isobare,

P3 = P2

et de la propriété (5.90) d’un processus adiabatique,
I 1/~
VY = p2Vy' = Vo= () Vi

la chaleur fournie (023 est mise sous la forme,

Q23 = (c+ 1) (p3Vaz — p2Va) = (c+ 1) pa (V3 — V3)

= (c+1)p2 <V3 - (i;)”%)

T A

» 5

Fig. 7.6 Diagramme (7, S) du cycle moteur de Brayton.

3) D’apres la définition (7.23) de la variation d’entropie pour un processus
isobare, de I’équation d’état (5.47) du gaz parfait et de la propriété d’un
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processus adiabatique énoncée précédemment, on obtient,

L aH ar T
AS41*/4 T(chl)NR/T4 T(c+1)NRln(T4>

=(c+1)NRIn <E> :(C+1)NR1n<<§;)l/”“2>

4) En inversant I’expression (7.12) de la variation d’entropie pour un processus
adiabatique, ces processus sont représentées par des droites verticales sur
un diagramme (7', S). En inversant l'expression (7.23) de la variation d’en-
tropie pour un processus isobare, on en déduit que les processus isobares
sont des exponentielles sur un diagramme (T, S) (fig. 7.6).

7.7 Cycle calorifique de Stirling

Un gaz parfait subit quatre processus réversibles formant le cycle calorifique de
Stirling (fig. 7.7) :

1 — 2 compression isotherme,
2 — 3 détente isochore,

3 — 4 détente isotherme,

4 — 1 détente isochore.

Les volumes minimal V'~ et maximal V' ainsi que les températures de la source
chaude T" et de la source froide 7'~ sont supposés connus.

PA

Fig. 7.7 Diagramme (p, V) du cycle calorifique de Stirling.

1) Déterminer les travaux Wis et Wy effectués lors de la compression 1 — 2
et de la détente 3 — 4 isothermes.

2) Déterminer les chaleurs fournies Q12, Q23, Q34 et Q41 lors de tous les
processus et en déduire la chaleur fournie () durant un cycle.
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3) Déterminer 'efficacité de refroidissement e~ du cycle calorifique.
4) Esquisser le diagramme (T, .S) du cycle.

Solution

1) D’apres la définition (7.15), les travaux effectués par les processus iso-
thermes & températures T et T~ sont donnés par,

2 V- _
W12:*/ pdV:fNRTJr/ g:fNRTJr ln<V>
1

v+ v

4 v+ +
W34:—/ pdVZ—NRT_/ ﬂ:—NRT_ In <V>
3 -V %

2) D’apres la définition (7.16), les chaleurs fournies par les processus iso-
thermes & température TF et T~ s’écrivent,

V-
Q2=—-Wia=NRT" In <V+>

V+
Q34 =—Wss =NRT In (V_>

D’apres la définition (7.19), les chaleurs fournies par les processus isochores
a volume V1 et V~ sont données par,

T

Q23 =AUy =cNR dT =c¢NR (T~ - T7)
T+
T+

Qu =AUy =cNR dI'=cNR(TT - T7)
-

La chaleur fournie @ durant un cycle est la somme des chaleurs fournies
durant les quatre processus,

_ v+
Q=0Qu24+ Q3 +Qsu+Qu=—NR(T"-T )ln<v> <0
3) Compte tenu du fait que la chaleur extraite de la source froide & tempéra-

ture T~ est Q~ = Q34 et que le travail effectué sur un cycle est opposé a
la chaleur fournie durant ce cyle, i.e. W = — @, D'efficacité de refroidisse-

ment (7.42) s’écrit,

- vt
vVt Tt -T-
V7

qui est égale & Defficacité de refroidissement (7.49) du cycle de Carnot.

NR(T+ - T-)In <

4) La définition (7.17) implique que les processus isothermes soient des droites
horizontales sur un diagramme (7,S). En inversant la définition (7.20)
de la variation d’entropie pour un processus isochore, on en déduit que
les processus isochores sont des exponentielles sur un diagramme (7', 5)
(fig. 7.8).
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T A

U 2 < 1

S5

Fig. 7.8 Diagramme (T, S) du cycle calorifique de Stirling.

7.8 Cycle moteur de Diesel

Un gaz parfait subit quatre processus réversibles formant le cycle moteur de
Diesel (fig. 7.9) :

1 — 2 compression adiabatique,
2 — 3 détente isobare,
3 — 4 détente adiabatique,

4 — 1 compression isochore.
La pression p; ainsi que les volumes Vi, V5 et V3 sont supposés connus.

L\

>V

Fig. 7.9 Diagramme (p, V) du cycle moteur de Diesel.

1) Déterminer les pressions py et py.

2) Déterminer les variations d’entropie AS1a, ASa3, AS34 et ASy; lors de tous
les processus et en déduire la variation d’entropie AS pour un cycle.
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Déterminer les variations d’énergie interne AU;o, AUsz, AUsy4 et AUy lors
de tous les processus et en déduire la variation d’énergie interne AU pour
un cycle.

Solution

1)

Compte tenu de la propriété (5.90) d’un processus adiabatique la pression
P2 s’écrit,

‘/1 v

VY =p Vo = P2 =p1 <)

Vs
De plus, le processus isobare est caractérisé par des pressions égales, i.e.
P2 = p3, et le processus isochore par des volumes égaux, i.e. V4 = V;. Ainsi
la pression py s’écrit,

V Y V Y V Y
psVy =psV] = pi=ps <Vi) = Py <Vj> =m (3>

A Taide des définitions (5.68), (7.12), (7.20) et (7.23), les variations d’en-
tropie AS1a, ASs3, AS3y et ASyq lors de tous les processus sont données
par,

AS13 =0
AS /BM(0+1)NR/T3M(0+1)NR111 ]
=)y T n T T
Vs
= 1)NRIn | —
(c+1) Rn(v2>
AS3y =0
AS. —/1dU— NR Tldg— NR1 Q
S T4T_C "\ 7

—¢NRIn (pl>
P4

On en déduit que la variation d’entropie AS sur un cycle est nulle,
AS = AS13 + ASs3 + ASsy + ASy; =0

qui est une conséquence du fait que I’entropie S est une fonction d’état.

Compte tenu de 1'équation d’état (5.47) du gaz parfait et de la défini-
tion (7.10), la variation d’énergie interne AU, lors d’un processus réver-
sible i — f est donnée par,

Ty
AU =cNR| dI'=cNR(Ty— T;) = c(psVy — piVi)
T;
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Ainsi, les variations d’énergie interne AUjs, AUsz, AUy et AUy lors de
tous les processus sont données par,

V v
AUz = c(p2Vo — piVi) = cpy <(V;> Vo — Vl)

V Y
AUsz3 = ¢ (psVs — p2Va) = cp1 <1) (V3 — V)

Vs
Va\” i\"7
AUsy = ¢ (paVi — p3V3) = cps 22— (F) v
Va Va
‘/'3 Y
AUy = c(p1Vi — paVa) = cpr (V1 — 7 Wi

On en déduit que la variation d’énergie interne AU sur un cycle est nulle,
AU = AUjo + AUss + AUsy + AUy =0

qui est une conséquence du fait que l’énergie interne U est une fonction
d’état.

7.9 Cycle d’Otto

Le cycle d’Otto est un modele de un moteur a combustion qui représente le
mode opératoire de la plupart des moteurs combustion non-diesel. Il est consti-
tué de quatre processus lorsque le moteur est modélisé comme un systeme
fermé, et de deux processus isobares supplémentaires lorsque le systeme est
ouvert. Ces deux processus correspondent a I’admission d’air et I’échappement
des gaz. Ainsi, on a,

e 0 — 1 admission isobare d’air

e 1 — 2 compression adiabatique

e 2 — 3 échauffement isochore

e 3 — 4 détente adiabatique

e 4 — 1 refroidissement isochore

e 1 — 0 échappement isobare des gaz
Supposer que les processus adiabatiques sont réversibles et que le gaz est un
gaz parfait caractérisé par le coefficient ¢ (5.62) et le coefficient v = (¢ + 1) /c.
Les valeurs suivantes de certaines variables d’état sont supposées connues : la
pression pq, les volumes V; = Vy et Vo = V3, la température T3 et le nombre

de moles N d’air a ’admission. Analyser ce cycle en utilisant les instructions
suivantes :

1) Esquisser les diagrammes (p, V') et (T, S) du cycle. Sur le diagramme (p, V'),
représenter aussi les processus d’admission et d’échappement.

2) Décrire ce que le moteur fait durant chaque processus.
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3) Expliquer pourquoi un échange d’air avec l'extérieur est nécessaire.
4) Sur les diagrammes (p, V') et (T, S) déterminer les relations entre les aires
délimitées par les cycles, le travail W et la chaleur @ par cycle.
5) Déterminer toutes les variables d’état aux points 1, 2, 3 et 4 du cycle, i.e.
trouver ps, p3, pa, 1o et Ty.
6) Déterminer le travail W effectué par cycle et la chaleur @) échangée durant
un cycle.
7) Déterminer le rendement du cycle d’Otto,
W
no = — @
ott Q1 = Qas3.
Solution
A
3 TA 3
V=V,
2
2
\ ,
! i
\ 1 v i
D 1 | V=n I
= 1 1
! Ly | L,
v, Vi S S,
Fig. 7.10 Diagramme (p, V) d’Otto Fig. 7.11 Diagramme (7, S) d’Otto

1)

Pour les processus isobares, p(V) = p; = ps = cste (fig. 7.10). Pour les
processus adiabatiques, d’apres la relation (5.90), p (V) = cste/V7 ouy > 1
et cste = p1 V)7 = pa V3! ou cste = p3 V' = py V). La pression p (V) est une
fonction convexe monotone décroissante de V. Pour les processus isochores,
V=Vo=V3=csteouV =V, =V, = cste.

Pour les processus adiabatiques, S = S1 = Sy = cste et S = S3 =S4 = cste
(fig. 7.11). Pour les processus isochores, d’apres la relation (7.20), T (S) =
Tyexp ((S— S1)/cNR) et T(S) = Toexp ((S — S2) /¢ NR), qui sont des
fonctions monotones croissantes de S.

Durant ’admission isobare d’air 0 — 1, une masse d’air est amenée dans le
cylindre a pression atmosphérique constante p; lorsque le piston se déplace
et le volume a l'intérieur du cylindre augmente de V2 a V;. Durant la com-
pression adiabatique 1 — 2, Tair a l'intérieur du cylindre est comprimé
adiabatiquement par le piston d’un volume initial V; a un volume final V5.
Durant le chauffage isochore 2 — 3, le mélange d’air et de carburant est
allumé. Durant la détente adiabatique 3 — 4, la gaz subit une expan-
sion adiabatique du volume initial V3 au volume final Vj, ce qui ramene
le piston dans sa position initiale. A cet instant, le gaz occupe un volume
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V4. Durant le refroidissement isochore 4 — 1, la chaleur est transférée a
I’environment jusqu’a ce que la pression parvienne a nouveau a la pression
atmosphérique p;. Finalement, durant 1’échappement isobare 4 — 0, le
gaz est retiré du cylindre a pression atmosphérique constante p; sous l'effet
du déplacement du piston, ce qui provoque une diminution du volume &
Iintérieur du cylindre de V7 a V5.

Un moteur qui fonctionne selon le cycle d’Otto est un moteur a combustion.
Cela signifie que I'oxygene est essentiel pour que la réaction de combustion
chimique puisse avoir lieu. Apres chaque allumage, de ’air frais doit entrer
dans le cylindre afin de permettre a une nouvelle réaction de combustion
d’avoir lieu.

L’air délimitée par le cycle dans le diagramme (p, V') s’écrit,

Va Va

}I{pdV: pdV—I—/ pdV =—Wio— Wy =-—-W
Vi Va

étant donné que Wo3 = Wy = 0. Ainsi, 'aire délimitée par le cycle dans le

diagramme (p, V') représente l'opposé du travail W effectué par cycle.

L’air délimitée par le cycle dans le diagramme (T, .S) s’écrit,

Ss S
%TdS:/ TdS+/ TdS =Qx+Qu=0Q
S, S,
étant donné que Q12 = Q34 = 0. Ainsi, l'aire délimitée par le cycle dans
le diagramme (7', S) représente la chaleur () échangée par cycle. Comme
I’énergie interne U est une fonction d’état, on doit avoir Q = — W, en
accord avec la relation (7.6).

A Daide de la relation (5.90) et de 'équation d’état du gaz parfait (5.47),
les pressions sont données par,

AAY _ NRT; _ NRT3 (B\"'
P2=n v ps—ivz Pa = % %
et les températures par,
Vi mVi (V1 ol Vo 7t
T = 15 = — Ty =15 —
'""NR >~ NR <V2) T n

D’apres la relation (7.14), les travaux effectués durant la compression et la
détente adiabatique s’écrivent,

T>
W12:AU12:CNR/ dT:CNR(Tngl)
T
%4
W34:AU34:CNR dT:CNR(T4— T3)
Ts

Le travail effectué par cycle est donné par,

W:W12+W34:CNR(T47 T+ 15 — Tl)
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D’apres la relation (7.19), les chaleurs échangées durant le échauffement et
le refroidissement isochores s’écrivent,

Ug T3
Q23:AU23:/ dU:CNR/ dT:CNR(TngQ)
U2 T2
Ui T
Qu = AUy, = / dU =c¢NR dT = ¢cNR (T, — Ty)
U4 T4

La chaleur échangée par cycle est donnée par,
Q = QQg +Q41 = CNR(Tg —Th+ 1T, — T4)
7) A Taide de la définition du rendement (7.38), on obtient,

__w_ w_ c-B+D-T) _ T-T
o QT Q23 c(Ts — T3) T35 — Ty

7.10 Cycle d’Atkinson

James Atkinson était un ingénieur anglais qui a congu plusieurs moteurs a
combustion. Le cycle thermodynamique qui porte son nom est une modification
du cycle d’Otto congue pour améliorer son rendement. Le prix a payer pour
parvenir & un meilleur rendement est une diminution du travail effectué par
cycle. Le cycle idéalisé d’Atkinson est constitué des quatre processus réversibles
suivants :

e 1 — 2 : compression adiabatique

e 2 —» 3 : échauffement isochore

e 3 — 4 : échauffement isobare

e 4 — 5 : détente adiabatique

e 5 —> 6 : refroidissement isochore

e 6 — 1 : refroidissement isobare
On suppose que les processus adiabatiques sont réversibles et que le cycle a lieu
sur un gaz parfait est caractérisé par,

c+1
c

pV =NRT U=cNRT v =

Les grandeurs physiques suivantes qui caractérisent le cycle sont supposées
connues : volumes V7, V5 et Vg, pressions p; et ps, température 75 et le nombre
de moles N de gas. Analyser ce cycle en utilisant les instructions suivantes :

1) Esquisser le diagramme (p, V') du cycle d’Atkinson.

2) Déterminer les pressions ps, p4, ps, e, les volumes Vi, Vi, Vs et les tempé-
ratures Ty, To, T3, T4, Tg, en termes des grandeurs physiques connues.
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3) Déterminer les travaux Wis, Waz, Wy, Was, Wse, Ws1 et le travail W
effectué par cycle.

4) Déterminer les transferts de chaleur Qq2, Qo3, @34, Qu5, @56, Q61 et la
chaleur Q1 = Q23 + Q34 fournie au gaz.

5) Déterminer le rendement du cycle d’Atkinson,
na=— &

Solution
PA

P3

Py

Fig. 7.12 Diagramme (p,V) du cycle d’Atkinson

1) Pour le processus adiabatique, d’aprés la relation (5.90), p (V') = cste/V”
olt v > 1 et cste = p1 V]’ = pa V' ou cste = py V' = p5 V.. La pression
p (V) est une fonction convexe monotone décroissante de V' (fig. 7.12). Pour
les processus isochores, V = Vo = V3 = cste or V = V5 = Vi = cste. Pour
les processus isobares, p (V) = p3 = ps = cste ou p (V) = pg = p1 = cste.

2) A Taide de la relation (5.90) et de ’équation d’état du gaz parfait (5.47),
les pressions sont données par,

AR _ _ NRT; _
pP2=n v P4 =Dp3 Pbs = Ve P = D1
et les volumes par,

NRQ)i a1

Vs =Va V4=( Vs Vs = Ve
ps3
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Les températures s’écrivent,

1 Vi mvi (vi\! p3 V3
'""NR " NR <V2> 7" NR
~N—1
_(psVe\ " 2 - mVs
T4_(NR> Is To=73xr

D’apres la relation (7.14), les travaux effectués durant la compression adia-
batique et la détente adiabatique s’écrivent,
T>
W12:AU12:CNR/ dT:CNR(Tngl)
T
Ts
Wys = AUys = cNR dT'=cNR(Ts — Ty)
Ty

D’apres la relation (7.18), il n’y a pas de travail effectués durant 1’échauf-
fement isochore et le refroidissement isochore,

Waz = Wi =0
D’apres la relation (7.21), les travaux effectués durant les processus isobares
s’écrivent,
4 Va
W34:—/ pdV:—pg/ dV:—pg(VZL—Vg):NR(TZL—Tg)
3 Vs

1 Vi
We1=—/ pdVZ—pl/ dV = =p1 (Vi = Vs) = NR (Ty — Tp)
6 Ve

Le travail effectué par cycle s’écrit,

W =Wis + Ws3q + Wys + We1
:CNR(TQ— T + 1T — T4)—|-NR (T4— Ts+ Ty — Tﬁ)

D’apres la relation (7.13), il n’y a pas d’échange de chaleur durant la com-
pression adiabatique et la détente adiabatique,

Qir2=0Q4 =0

D’apres la relation (7.19), les chaleurs échangées durant I’échauffement iso-
chore et le refroidissement isochore sont données par,

Us T3

Q23:AU23: dU =cNR dTZCNR(Tg,—Tg)
Us Ty
Ue T6

Q56:AU56:/ dU:CNR/ dT:CNR(Tﬁng;)
U5 T5
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D’apres la relation (7.22), les chaleur échangées durant les processus iso-
bares s’écrivent,

H4 T4

Q34:AH34:/ dH = (c+1)NR | dT = (c+1) NR(Ts— Ty)
Hs T3
H1 Tl
Qm:AHm:/ dH:(c+1)NR/ dT = (c+1) NR(Ty — T)
H(;‘, TG

La chaleur fournie au réservoir chaud s’écrit,
Q" =Qi+Qsu=cNR(Ts— T3) + (c+ 1) NR(Ty — T5)
5) A T'aide de la définition du rendement (7.38), on obtient,

W -+ =T+ (Ty— T3+ T — Tp)
=T or c(Ts — To) + (c+ 1) (Ty — T5)
(Tl— T2+T4— T5)+(’)/— 1)(T3— T4—|—T6— Tl)

(T3 = Ta) + v (Ty — T3)

7.11 Cycle calorifique

Un gaz parfait caractérisé par le coefficient ¢ (5.62) et le coefficient v =
(¢c+ 1) /c subit un cycle calorifique constitué de quatre processus réversibles

(fig. 7.13) :
e 1 — 2 : compression adiabatique
e 2 — 3 : compression isobare
e 3 — 4 : refroidissement isochore

e 4 — 1 : détente isobare
Analyser ce cycle en utilisant les instructions suivantes :

1) Déterminer le volume V5 en termes des volumes V; et V5 et des pressions
D1 et pa.

2) Déterminer la variation d’entropie ASs3 durant la compression isobare.

3) Déterminer la chaleur échangée Q23 durant la compression isobare.

4) Supposer a présent qu’au lieu d’un gaz parfait on a utilisé un fluide qui est
entierement dans un état gazeux au point 2 et entierement dans un état
liquide au point 3. La compression isobare 2 — 3 est alors une transition
de phase qui a lieu a la température T' et qui est caractérisée par la chaleur
latente molaire de vaporisation £y,. Déterminer la variation d’entropie ASs3
durant la transition de phase en termes du nombre de moles N de fluide, du
volume V5, de la pression ps et de la chaleur latente molaire de vaporisation
L4, en supposant que pV = NRT dans la phase gazeuse.
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Fig. 7.13 Diagramme (p,V) du cycle calorifique

Solution

1) A laide de la condition d’adiabacité (5.90), le volume V5 s’écrit,

1
b2

2) D’apres la relation (7.23), la variation d’entropie durant la compression
isobare est donnée par,

Ss T
ASQSZ/ dS=(c+1)NR dT:(c—f—l)NRln(Tg>
S. T T:

2 T 2

3) D’apres la relation (7.22), la chaleur échangée durant une compression iso-
bare s’écrit,

Hj Ts

Hy T>

4) D’apres la relation (2.43), pour une processus isotherme comme une tran-
sition de phase a la température T,

S3
Q23:T/ dS:T(Sg—SQ):TASQ;g
S

2

D’apres les relations (6.44), (6.45) et 'équation d’état du gaz parfait (5.47),

NGy =92 __Qu _ Nby  N'Rly
BT T T P2 Va




24 Machines thermiques

7.12 Cycle de Rankine

Un gaz parfait caractérisé par le coefficient ¢ (5.62) et le coefficient v =
(¢ + 1) /c subit un cycle moteur de Rankine constitué de quatre processus ré-
versibles :

e 1 —> 2 : détente isobare

e 2 —> 3 : détente adiabatique

e 3 — 4 : compression isobare

e 4 — 1 : compression adiabatique

Ainsi, le cycle est représenté par un rectangle dans un diagramme (T, .S)
(fig.7.14).

i \

Py

Ps

» S
S, Sy

Fig. 7.14 Diagramme (7, S) d’un cycle de Rankine pour un gaz parfait.

Analyser ce cycle en utilisant les instructions suivantes :

1) Esquisser le diagramme (p, V') du cycle de Rankine pour un gaz parfait.

2) Déterminer les travaux effectués Wig, Wasz, Wiy et Wy et le travail effectué
par cycle W en termes des enthalpies Hi, Hy, Hs et Hy.

3) Déterminer la chaleur fournie au réservoir chaud QT = Q12 en termes des
enthalpies Hi, Ho, Hs et Hy.

4) Déterminer le rendement du cycle de Rankine pour un fluide parfait défini
comme,

nszg

Solution

1) Pour les processus isobares, p (V) = p1 = p2 = cste or p(V) = p3 = py =
cste (fig. 7.15). Pour les processus adiabatiques, d’apres la relation (5.90),
p(V) = cste/V7 ot v > 1 et cste = p1 V;' = py V) ou cste = po V' =
p3 V3. La pression p (V) est une fonction convexe monotone décroissante
de V.
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P A

N >

A

B
3

» V

Fig. 7.15 Diagramme (p,V) d’un cycle de Rankine.

2) D’apres la relation (7.21), les travaux effectués durant la détente isobare et

la compression isobare sont donnés par,

2 Va
Wia=— [ paV=—p [ dv=—p(a= Vi) =~ NR (L.~ T
1 Vi
4 Vi
W34:7/ pdV:—p/ dV =—p(Va— V3) = = NR (Ty — T3)
3 V3

D’apres la relation (5.65), ces travaux peuvent étre exprimés en fonctions

des enthalpies comme,

1 v—1
Wis=——(H1 — Hy) = — (H, — H
12 c+1(1 2) (Hy 2)
w. —L(H H)_Ll(H Hy)
30 = Ty Uis 4= 3 4

D’apres la relation (7.14), les travaux effectués durant la détente adiaba-
tique et la compression adiabatique sont donnés par,

Ts
W23:AU23:CNR dT:CNR(Tg— TQ)
T>
T3
W41=AU41=CNR/ dTZCNR(T1—T4)
T

D’apres la relation (5.65), ces travaux peuvent étre exprimés en fonctions

des enthalpies comme,

c 1
Wg — Hy — Hy) = — (Hs — H.
23 chl(3 2) 7(3 2)

c 1
Wyp=———-H — H)=—-(H,— H
41 chl(1 4) 7(1 )
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La travail effectué par cycle est donné par,
W =Wig + Was + Wiy + Wiy
= L Hy+ Hy— H2)+ = (o= Ho+ 1y = 1)
=H, - Hy+ H3z — Hy

3) D’apres la relation (7.22), la chaleur échangée durant la détente isobare est

donnée par,
Q" =Qu=AH;,=H,— H

4) A Taide de la définition (7.38) du rendement, on obtient,

__K _K__Hl—H2+H3—H4_1_H3—H4
TEETOF T Qn Hy — Hy Hy — H,

7.13 Cycle de Rankine pour un fluide biphasique

Un moteur est constitué d’'une chaudiere, d'un condensateur, d’une turbine et
d’une pompe (fig. 7.16). Ce moteur subit un cycle de Rankine cycle pour un
fluide biphasique (fig. 7.17). Le cycle est constitué de cinq processus :

turbine
vapeur K
A

1C

chaudiére condensateur

)

pompe a eau

liquide

A

corps de chauffe

Fig. 7.16 Diagramme du moteur de Rankine pour un fluide biphasique.

e 1 — 2 : Le fluide sortant de la turbine est entierement condensé (1). Le
liquide subit alors une compression isentropique d’une pression initiale pq
a une pression finale po.

e 2 — 3 : Le liquide est chauffé a pression constante po par la chaudiere. Il
subit un échauffement isobare jusqu’a ce qu’il parvienne a la température
de vaporisation (3).
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T A

» S

i — — — — —

Si 5 S

Fig. 7.17 Diagramme (7, S) du cycle de Rankine pour un fluide biphasique.

e 3 — 4 : Le liquide est vaporisé a pression constante po. Il subit une tran-
sition de phase jusqu’a la vaporisation compleéte (4).

e 4 — 5 : Le gaz subit une détente isentropique d’une pression initiale ps a
une pression finale p;.

e 5 —> 1: Le gaz est condensé a pression constante p;. Il subit une transition
de phase jusqu’a la condensation complete (1).

Analyser ce cycle en utilisant les instructions suivantes :

1) Déterminer la chaleur fournie par la chaudiere QT = Qa3 + Q34, la chaleur
libérée au condensateur Q~ = (@51 en termes des enthalpies par unité de
masse h}, hi, h} et hi et la masse M de fluide qui subit ce cycle (fig. 7.17).

2) Déterminer le travail effectué par la pompe Wis et le travail effectué sur
la turbine Wys en termes des enthalpies par unité de masse hj, h5 et hf et
de la masse M en utilisant les résultats obtenus pour le systeme présenté
en sect. 4.14 et en supposant que la puissance mécanique est égale a la
puissance chimique Po du fluide traversant la pompe et la turbine, i.e.
Py = Pc.

3) Déterminer le rendement du cycle de Rankine pour un fluide biphasique
défini comme,

w
nR:—g

Solution

1) Le chauffage isochore et la vaporisation ont lieu a pression constante ps.
D’apres la relation (4.61), la chaleur fournie par la chaudiére s’écrit,

Q" = Qa3+ Q34 = AHo3 + AHzy = AHyy = M (b} — h})

La condensation a lieu & pression constante p;. D’apres la relation (4.61),
la chaleur fournie au condensateur est donnée par,

Q" =Qs51 =AHs; = M (h] — hs)
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2) Au vu de l'expression obtenue pour la puissance chimique Po exercée sur
un systeéme ouvert dii au transfert de matiere (sect. 4.14) et on supposant
que la puissance mécanique Py, est due a la puissance chimique Po du
fluide circulant dans la pompe ou la turbine, on obtient,

Py = Po =M (b} — k)

ot M est le débit de masse, h; et h} sont les enthalpies initiales et finales
par unité de masse qui sont constantes. En intégrant ce résultat par rapport
au temps, on trouve le travail effectué durant le processus i — f,

Wip = M (h} — Iy)
Ainsi, le travail W74 effectué par la pompe sur le fluide est,
Wiz = M (h3 — hi)
et le travail Wys effectué par le fluide sur la turbine est,
Wys = M (hi — h})
3) A T'aide de la définition du rendement (7.38), on obtient,

W Wi+ Wi hy—hi+hi—hy . hi- R

" Q+ Ri—hy R R



